30
22707

Регенерация тканей и клеточное старение

Компас посвящен изучению клеточного старения во взаимосвязи с регенерацией тканей и со старением организма в целом. Рассматриваются особенности стресс-индуцированного старения стволовых клеток, а также постмитотического старения (неделящихся) клеток.

на сайте с 27 декабря 2008

Что такое регенерация

тритон Ученые давно пытаются понять, каким образом земноводные -- например, тритоны и саламандры -- регенерируют оторванные хвосты, конечности, челюсти. Более того, у них восстанавливаются и поврежденное сердце, и глазные ткани, и спинной мозг.
Способ, применяемый земноводными для саморемонта, стал понятен, когда ученые сравнили регенерацию зрелых особей и эмбрионов. Оказывается, на ранних стадиях развития клетки будущего существа незрелы, их участь вполне может измениться.
Это показали эксперименты над эмбрионами лягушек. Когда эмбрион имеет всего лишь нескольких сотен клеток, из него можно вырезать часть ткани, которой уготована участь стать шкурой, и поместить ее в область мозга.
И эта ткань станет частью мозга. Если же подобная операция производится с более зрелым эмбрионом, то из клеток кожи все равно развивается кожа -- прямо посреди мозга. Потому что судьба этих клеток уже предопределена.
Для большинства организмов клеточная специализация, из-за которой одна клетка становится клеткой иммунной системы, а другая, скажем, частью шкурки -- это дорога с односторонним движением, и клетки придерживаются своей "специализации" до самой смерти.
А клетки земноводных умеют обратить время вспять и вернуться к тому
моменту, когда предназначение могло измениться. И если тритон или
саламандра потеряли лапу, на поврежденном участке тела клетки костей, шкуры и крови становятся клетками без отличительных признаков. Вся эта масса вторично "новорожденных" клеток (ее называют бластемой) начинает усиленно делиться. И в соответствии с нуждами "текущего момента" становиться клетками костей, шкуры, крови... Чтобы стать в конце новой лапой. Лучше прежней.

А как у человека?


Известно только два вида клеток, которые могут регенерировать, -- это
клетки крови и клетки печени. Но здесь принцип регенерации иной. Когда
эмбрион млекопитающего развивается, немножко клеток остается в стороне от процесса специализации.
Это -- стволовые клетки. Они обладают способностью пополнять запасы крови или отмирающих клеток печени. Костный мозг тоже содержит стволовые клетки, которые могут становиться мышечной тканью, жиром, костями или хрящами -- в зависимости от того, какие питательные вещества им даются. По крайней мере в кюветах.
Если ввести клетки костного мозга в кровь мыши с поврежденными мышцами, эти клетки собираются в месте повреждения и выправляют его. Впрочем, что верно для мыши, неприменимо к человеку. Увы, мышечные ткани взрослого человека не восстанавливаются.
Доктор Хебер-Катц полагает, что организмы первоначально имели два
способа исцеления от ран -- иммунную систему и регенерацию. Но в ходе эволюции обе системы стали несовместимы друг с другом -- и пришлось выбирать. Хотя регенерация может на первый взгляд показаться лучшим выбором, Т-клетки для нас -- насущней. Ведь они -- основное оружие организма против опухолей. Что толку быть способным отращивать себе заново потерянную руку, если одновременно в организме будут бурно развиваться раковые клетки?
Получается, что иммунная система, защищая нас от инфекций и рака, одновременно подавляет наши способности к "саморемонту".

На какую клетку нажать

Дорос Платика, глава бостонской компании Ontogeny, уверен, что однажды мы сможем запустить процесс регенерации, даже если и не поймем все его детали до конца. Наши клетки хранят в себе врожденную способность отращивать новые части тела, точно так, как они это делали в процессе развития плода.
Инструкция по выращиванию новых органов записана в ДНК
каждой из наших клеток, нам просто нужно заставить их "включить" свою
способность, а дальше процесс сам позаботится о себе.
Специалисты Ontogeny работают над созданием средств, включающих
регенерацию. Первое -- уже готово и, возможно, скоро будет разрешено к
продаже в Европе, США и Австралии. Это -- фактор роста под названием
OP1 или BMP7, он стимулирует рост новой костной ткани. OP1 поможет при лечении сложных переломов, когда две части сломанной кости сильно не совпадают друг с другом и потому не могут срастись. Часто в таких случаях конечность ампутируют. Но OP1 стимулирует костную ткань так, что она начинает расти и заполняет собой промежуток между частями сломанной кости.
Все, что нужно сделать врачам, -- это подать сигнал, чтобы костные
клетки "росли", а тело само знает, сколько нужно костной ткани и где.
Если такие сигналы роста найти для всех типов клеток, отрастить новую
ногу можно будет при помощи нескольких инъекций.
Но существенный барьер: стимулирование клеток к регенерации может привести к возникновению рака. Земноводные, не имеющие иммунной защиты, как-то иначе защищены от рака -- вместо опухолей у них вырастают новые части тела.
Но клетки млекопитающих так легко поддаются бесконтрольному обвальному делению...

лимит Hayflick

Более сорока лет прошло с оригинальной публикации Hayflick и Moorhead, в которой было изложена концепция ‘лимита Hayflick’,т.е. максимального числа делений, которые соматические клетки претерпевают in vitro.
Эта концепция до сих пор рассматривается как фундаментальная характеристика продолжительности жизни видов. Но есть другая характеристика соматических клеток, продолжительность их выживания in vitro в неделящимся состоянии после прекращения пролиферации. Она была предложена на основании результатов недавних экспериментов с так называемыми японскими ускоренно старящимися мышами. Результаты этих экспериментов выявили хорошую корреляцию между продолжительностью жизни у мышей, числом делений их фибробластов in vitro и продолжительностью выживания этих клеток в неделящимся состоянии. В рутинных культуральных условиях выживание
клеток может быть очень длительным, в течение несколькиз лет. Однако, когда клетки растут в условиях окислительного стресса, продолжительность жизни клеток существенно сокращается. Этот новый тест может служить дополнительным маркером продолжительности жизни организма. Относительная ценность обоих тестов,
классического 'лимита Hayflick' и нового теста обсуждается здесь.

Кавеолин

Общепринято, что старение является феноменом необратимым, неизбежным и всеобщим и связано с потерей паренхимы и функциональным спадом.
Следовательно, основными целями исследований по старению являются развитие стратегий по замещению стареющих органов или клеток, основанных на инструментах придания бессмертия, стволовых клетках или искусственных заместителей.
Недавно, однако, новая концепция функционального восстановления была предложена на основе функционального восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста.
Было показано, что стареющие фенотипы гипореактивности и морфологических изменений хорошо восстанавливаются путем модуляции нескольких мембрано – связанных молекул, называемых привратниками, среди которых кавеолин является одной из основных детерминант.
Кавеолин является важнейшим компонентом кавеолы, ответственным за регуляцию сигнальной трансдукции, эндоцитоз и трансцитоз и перестройку цитоскелетов через его поддерживающий домен. Статус кавеолина строго связан с клеточной трансформацией при его истощении и со стареющим фенотипом при оверэкспрессии. Поэтому, простое снижение статуса кавеолина в стареющих клетках ведет к восстановлению чувствительности к митогенным стимулам и даже к восстановлению формы клеток.
Эти данные являются сильным подтверждением точки зрения, что молекулы – привратники, представленные кавеолином, могут играть главную роль в определении стареющих фенотипов. Исходя из этих результатов может быть выведено, что принцип замещения
не обязательно должен быть основным, но принцип восстановления может его заменить для коррекции состояния стареющих клеток и организмов.
Таким образом, новая концепция функционального восстановления была предложена на основе восстановления чувствительности стареющих клеток к ряду агонистов, включая факторы роста.

Клеточное старение

Старение клеток является событием, которое происходит во всех нормальных клетках. Клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Они прекращают делиться и в конце концов умирают. В соответствии с этим ожидаемая продолжительность жизни в
установленной культуре клеток зависит от возраста донора.
Клетки, приобретшие бессмертие, через кризисный перод трансформации за счет воздействия химических
веществ или вирусов, точно так же, как линии злокачественных клеток в целом, обладают способностью делиться неопределенно долго.
Другая форма клеточной смерти, апоптоз, или программируемая клеточная смерть, происходит во многих физиологических ситуациях, например, при дифференцировке кератиноцитов.
Наука о старении клеток называется цитогеронтология. Продолжительность жизни нормальных диплоидных клеток в культуре ограничена, находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и др.).
Большинство клеток млекопитающих при помещении в культуру претерпевают ограниченное число клеточных делений перед тем, как переходят в нечувствительное непролиферирующее состояние, называемое старением.
Однако, несколько путей, которые активируются по одиночке или совместно могут помочь клеткам обойти старение по крайней мере на ограниченные периоды времени. Они включают
теломеразный путь, требующийся для поддержания теломерных концов, и пути p53 и Rb, требующиеся для направления старения в ответ на повреждения ДНК, сокращение теломеров и митогенные сигналы, и путь подобного инсулину ростового фактора, который может регулировать продолжительность жизни и клеточную пролиферацию.
Эмбриональные стволовые клетки бессмертны, потому что эти пути в них строго регулируются.
Таким образом, клетки, растущие в культуре, имеют ограниченную
продолжительность жизни и не растут после определенного числа делений.
Продолжительность жизни нормальных диплоидных клеток в культуре находится под генетическим контролем и ее можно модифицировать(гомонами, факторами роста и
др.).

Cтволовые клетки и старение

Исследования по обнаружению генов, регулирующих стволовые клетки, обычно принимают одну из двух различных линий исследования.
Прямой генетический подход начинает с измеримых фенотипических отличий к генетическому полиморфизму и, как предполагает имя, путь исследования имеет обратный порядок при использовании
обратной генетики. Число вновь открываемых локусов, ответственных за
специфические для стволовых клеток фенотипы и функционирование увеличивается с большой скоростью вследствие успеха обоих подходов. Эти локусы регулируют стволовые клетки внутренними (клеточно-автономными) и/или внешними механизмами и диктуют судьбу стволовых клеток.
 В течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как
предполагают, влияют как на скорость старения, так и на продолжительность жизни организма.
На самых ранних стадиях эмбрионального развития клетки обладают способностью неограниченно делиться и затем дифференцироваться в различные типы клеток тела.
Недавние исследования выявили, что большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма.
Межклеточные сигналы, которые контролируют пролиферацию, дифференцировку и выживание стволовых клеток были
идентифицированы и включены в набор различных факторов роста, цитокинов и молекул клеточной адгезии.
Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают установленные пути вторичных
мессенджеров, новые транскрипционные факторы и теломеразу. Возможность того, что уменьшение числа или пластичности популяций стволовых клеток вносит вклад в старение и связанную со старением болезнь вытекает из последних открытий.
Замечательная пластичность стволовых клеток заставляет предположить, что эндогенные или трансплантированные стволовые клетки могут быть могут быть использованы в путях, которые позволят им возмещать потерю дисфункциональной клеточной популяции при болезнях от нейродегенеративных и гематопоэтических
расстройств до диабета и сердечно-сосудистой болезни
.
Роль стволовых клеток в многоярусной организации структуры ткани увеличивает потенциал долгожительства в многоклеточном организме. Эта роль может быть ответственна за механизм эволюции самих стволовых клеток.
Успешное развитие тканевых терапий и управление ими должно проводиться с учетом принципов работы этого механизма.
Целями настоящего обзора являются, во-первых, критически рассмотреть, что известно о влиянии старения на стволовые клетки в целом и на гематопоэтические клетки в частности.
Во-вторых, приведены данные в поддержку гипотезы, что
старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих.
Старение оказывает количественное и качественное влияние на
стволовые клетки. В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами, включая сигналы от стромы.
Хотя гематопоэз обычно поддерживается на нормальном и поддерживающим жизнь уровнях в течение нормального старения, сниженная функция становится очевидной, когда стволовые
клетки подвергаются стрессу. Существует достаточно данных об уменьшении способности к самообновлению, ограничении широты способности к развитию и уменьшении числа потомства у старых стволовых клеток, подвергшихся гематопоэтическим требованиям. Сделано предсказание, что пластичность в потенциале развития, которой обладают молодые стволовые клетки, теряется в ходе
старения. Те части мира, где растут стандарты жизни, там также возрастает доля пожилых в населении.
Влияние старения на многие физиологические функции не является хорошо изученным и оцененным. Общественная необходимость обеспечить улучшение качества жизни для этого растущего сегмента популяции требует большего внимания к особенностям старения в экспериментальных исследованиях.
Исследование популяций стволовых клеток вероятно будут плодотворными исследованиями такого типа.
Стволовые клетки определяются по их большой способности к самообновлнию, но тем не менее есть множество свидетельств снижения функционирования стволовых клеток во время старения.
В то время как внутриклеточное восстановление и защитные механизмы определяют продолжительность жизни отдельных клеток,
существуют аргументы, что соматические стволовые клетки определяют
продолжительность жизни всей ткани, и поэтому играют ключевую роль в процессе старения организма.
Недавно было показано, что потенциал развития соматических
стволовых клеток может быть гораздо больше, чем считалось ранее. Хотя механизмы, регулирующие пластичность стволовых клеток далеки от ясности, стоит обсудить потенциальную значимость этих открытий для познания процесса старения. Хороший обзор по этой теме можно найти здесь.
Таким образом, в течение процесса старения стволовые клетки претерпевают как количественные, так и качественные изменения, которые, как предполагают, влияют как на скорость старения, так и на продолжительность жизни организма.
В целом качественные изменения более важны, поскольку они влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами.
Большая часть замечательного регенераторного потенциала эмбриональных стволовых клеток сохраняется небольшой популяцией клеток в большинстве тканей взрослого организма. Межклеточные сигналы, которые контролируют пролиферацию,
дифференцировку и выживание стволовых клеток были идентифицированы (факторов роста, цитокинов и молекул клеточной адгезии).
Внутриклеточные механизмы, которые определяют судьбу стволовых клеток также были выявлены и включают
установленные пути вторичных мессенджеров, новые транскрипционные факторы и теломеразу.
Старение стволовых клеток играет критическую роль в определении эффектов старения на функцию органов, и в конце концов на продолжительность жизни млекопитающих.
В целом качественные изменения более важны, поскольку они
влияют на потенциал самообновления, потенциал развития и взаимодействие с внешними сигналами.

Современные исследования

В декабре 2008 года в журнале Cell была опубликована важная и интересная статья, в которой основная роль в старении организмов млекопитающих отводится хроматин-ассоциированному белку HMG2 и микроРНК.
Здесь можно прочитать статью в pdf формате.

Комментарии

Оставить комментарий

Поделиться с друзьями

Share on Twitter