2
23566

Гематоэнцефалический барьер

Компас посвящен структуре, благодаря которой происходит регуляция обмена веществ между кровью и мозгом- гематоэнцефалическому барьеру.

на сайте с 27 августа 2008

Что и зачем?

blood-brain barrier По определению Штерн, гематоэнцефалический барьер (ГЭБ,  blood-brain barrier (BBB))- это совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ). Это определение из книги Покровского и Коротько "Физиология человека".

Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.
В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее:
 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка;
 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;
 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.
Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.
Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Гистологическая структура

гематоэнцефалический барьер
Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
Ведущим компонентом гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга:
 - через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь)
 - через стенку капилляра.
 У взрослого организма   основным путем движения   вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Морфологическим субстратом ГЭБ являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции ГЭБ придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

Иллюстрация взята с сайте tryphonov.ru.

Функционирование ГЭБ

астроцит В основе функционирования ГЭБ лежат процессы диализа, ультрафильтрации, осмоса, а также изменение электрических свойств, растворимости в липидах, тканевого сродства или метаболической активности клеточных элементов. Важное значение в функционирование придается ферментному барьеру, например, в стенках микрососудов мозга и окружающей их соединительнотканной стромы (гематоэнцефалический барьер) — обнаружена высокая активность ферментов — холинэстеразы, карбоангидразы, ДОФА-декарбоксилазы и др. Эти ферменты, расщепляя некоторые биологически активные вещества, препятствуют их проникновению в мозг.
Водорастворимые молекулы не могут свободно диффундировать между кровью и ЦСЖ из-за непроницаемых жестко связанных соединений между эпителиальными клетками сосудистых сплетений, вместо этого эпителиальные клетки переносят определенные молекулы с одной стороны барьера на другую. Как только молекулы попадают в ЦСЖ, они диффундируют через «протекающий» эпителиальный слой и достигают интерстициальной жидкости, окружающей нейроны и глиальные клетки.
1.Эндотелиальная клетка
2.Плотное соединение
3.Церебральный капилляр
4.Нейрон
5.Глюкоза
6.Интерстициальная жидкость
7.Глиальная клетка
8.Эпендимный слой



1.Хориоидальное сплетение, эпителиальная клетка
2.Капилляр
3.Плотное соединение
4.Эпендимный слой







Эпителиальные клетки переносят определенные молекулы из капилляров внутрь желудочков головного мозга. Поток ионов, пересекающий ГЭБ (кровь-ЦСЖ) регулируется несколькими механизмами в сосудистом сплетении:
1.Кровеносный сосуд (плазма)
2.Базолатеральная (нижнебоковая) поверхность
3.Эпителиальная клетка сосудистого сплетения
4.Жесткая связь
5.Желудочки
6.Апикальная (верхняя) поверхность
7.СМЖ в желудочке
8.Ионный обмен


Молекулы воды в эпителиальных клетках диссоциируют на ионы водорода и гидроксильные ионы. Гидроксильные ионы комбинируются с двуокисью углерода, которая является продуктом клеточного метаболизма. На поверхности базолатеральных клеток ионы водорода обмениваются на внеклеточные ионы натрия из плазмы. В желудочках мозга ионы натрия активно переносятся через апикальную поверхность клетки (верхушку). Это сопровождается компенсаторным движением ионов хлорида и бикарбоната в ЦСЖ. Для поддержания осмотического равновесия вода движется в желудочки.

Проницаемость и регуляция ГЭБ

астроцит ГЭБ рассматривают в качестве саморегулирующейся системы, состояние
которой зависит от потребностей нервных клеток и уровня метаболических
процессов не только в самом мозге, но и в других органах и тканях
организма. Проницаемость ГЭБ неодинакова в разных отделах мозга,
селективна для разных веществ и регулируется нервными и гуморальными
механизмами. Важная роль в нейрогуморальной регуляции функций ГЭБ
принадлежит изменению интенсивности метаболических процессов в ткани
мозга, что доказывается угнетающим влиянием ингибиторов метаболических
процессов на скорость транспорта аминокислот в мозг и стимуляцией их
поглощения субстратами окисления.
Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе.  При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови. Проникновение в мозг в области гипоталамуса, где ГЭБ «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы. Имеются многочисленные доказательства снижения защитной функции ГЭБ под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д. В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р  уменьшать проникновение в мозг определенных веществ.

ГЭБ- это система защиты мозга от внешних повреждающих факторов. Как говорилось выше, при травмах, патологических процессах она может нарушаться. Кроме того, у некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер.
Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит. Менингит новорожденных , например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульные полисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру.

ГЭБ работает как селективный фильтр, пропускающий в цереброспинальную жидкость одни вещества и не пропускающий другие, которые могут циркулировать в крови, но чужды мозговой ткани. Так, не проходят через ГЭБ адреналин, норадреналин, ацетилхолин, дофамин, серотонин, гамма-аминомасляная кислота (ГАМК), пенициллин, стрептомицин.

Билирубин всегда находится в крови, но никогда, даже при желтухе, он не проходит в мозг, оставляя неокрашенной лишь нервную ткань. Поэтому трудно получить эффективную концентрацию какого-либо лекарственного препарата, чтобы оно достигло паренхимы мозга. Проходят через ГЭБ морфий, атропин, бром, стрихнин, кофеин, эфир, уретан, алкоголь и гамма-оксимасляная кислота (ГОМК). При лечении, например, туберкулезного менингита стрептомицин вводят непосредственно в цереброспинальную жидкость, минуя барьер с помощью люмбальной пункции.

Необходимо учесть необычность действия многих веществ, введенных непосредственно в цереброспинальную жидкость. Трипановый синий при введении в цереброспинальную жидкость вызывает судороги и смерть, аналогичное действие оказывает желчь. Ацетилхолин, введенный непосредственно в мозг, действует как адреномиметик (аналогично адреналину), а адреналин, наоборот, — как холиномиметик (аналогично ацетилхолину) : артериальное давление понижается, возникает брадикардия, температура тела вначале снижается, а потом повышается.
Он вызывает наркотический сон, заторможенность и аналгезию. Ионы К+ выступают в качестве симпатомиметика, а Са2+ — парасимпатомиметика. Лобелин — рефлекторный стимулятор дыхания, проникая через ГЭБ, вызывает ряд побочных реакций (головокружение, рвоту, судороги). Инсулин при внутримышечных инъекциях снижает содержание сахара крови, а при непосредственном введении в цереброспинальную жидкость — повышает.

Все лекарства, выпускающиеся в мире, делятся на проникаюшие и не проникающие через ГЭБ. Это является большой проблемой- некоторые лекарства не должны проникать (но проникают), а некоторые наоборот- должны проникать для достижения терапевтического эффекта, но не могут в силу своих свойств. Факмакологи занимаются разрешением этой проблемы с помощью компьютерного моделирования и экспериментальных исследований.

ГЭБ и старение

астроцит Как говорилось выше, одна из важнейших частей ГЭБ- астроциты. Формирование ГЭБ и является их основной функцией в мозге.
Проблема трансформации клеток радиальной глии(РГ) в звездчатые астроциты в
постнатальный период развития лежит в основе астроцитной теории
старения млекопитающих.
Имеет место исчезновение эмбриональных радиальных путей миграции клеток
от места их пролиферации к местам их конечной локализации в мозгу
взрослой особи, что является причиной постмитотичности мозга
млекопитающих. Исчезновение РГ индуцирует целый каскад системных
процессов, которые названы как механизм возрастзависимого
самоуничтожения млекопитающих (МВСМ). Исчезновение клеток РГ делает
невозможной замену исчерпавших свой жизненный ресурс нейронов
(Бойко,2007).
Возрастные изменения ГЭБ еще не изучены полностью.В повреждении ГЭБ несомненную роль играют атеросклероз, алкоголизм и др. заболевания. При недостаточном функционировании ГЭБ начинается проникновение холестерина и аполипопротеина в ткань мозга, что ведет к большему повреждению ГЭБ.
Возможно, изучив возрастные изменения ГЭБ, ученые смогут приблизится к разгадке проблемы старения.

ГЭБ и болезнь Альцгеймера

Гипокамп мыши с болезнью Альцгеймера Старение мозга и нейродегенеративные заболевания связаны с оксидативным стрессом, нарушением содержания металлов и воспалением, и далеко не последнюю роль в этом играет ГЭБ.  Например, рецепторы гликозилированных белков (РГБ) и протеин-1, связанный с рецепторами липопротеина низкой плотности (П1-РЛП), встроенные в структуру ГЭБ, играют основную роль в регуляции обмена бета-амилоида в ЦНС, и изменение активности этих двух рецепторов может способствовать накоплению бета-амилоида в ЦНС с последующим развитием воспаления, нарушением баланса между мозговым кровообращением и метаболизмом, изменением синаптической передачи, повреждением нейронов и отложением амилоида в паренхиме и сосудах головного мозга. А в результате- болезнь Альцгеймера. Накопление аполипопротеина в периваскулярном (околососудистом) пространстве- ключевой момент в развитии этого страшного заболевания, которое распространяется все с большей скоростью и уже поражает лиц моложе 40 лет. О роли аполипопротеина и повреждении астроцитов ГЭБ пишут немецкие авторы под руководством Dr. Dietmar R. Thal из Department of Neuropathology, University of Bonn.
Кроме того, некоторые исследователи считают, что болезнь Альцгеймера может носить и аутоиммунную природу- проникновение церебрального протеина в кровоток через дефицитарный ГЭБ. В сосудистой системе образуются антитела, атакующие мозг при повторном переходе через барьер.

Многие ученые связывают развитие нейродегенеративных заболеваний и поддержание нервных стволовых клеток с активностью ABC transporters- АТФ-связывающих транспортеров. ABCB-семейство этих транспортеров обнаружено в ГЭБ. В недавней статье исследовательской группы под руководством профессора Jens Pahnke из Neurodegeneration Research Laboratory (NRL), Department of Neurology, University of Rostock обсуждаются накопленные данные. Ученые полагают, что благодаря изучению роли и функционирования ABC transporters можно будет глубже понять патогенез болезни Альцгеймера, создать новые подходы в терапии и математические методы для расчета риска.
В апреле 2008 года в BBC News появилось сообщение Джонатана Гейгера  из University of North Dakota о том, что ежедневное употребление одной чашки кофе в день укрепляет гематоэнцефалический барьер, защищая мозг от вредного воздействия холестерина. Исследователи под руководством Джонатана Гейгера кормили кроликов пищей с высоким содержанием холестерина. Кроме того, некоторые животные ежедневно получали воду, содержащую 3 мг кофеина (что эквивалентно одной чашке кофе). Спустя 12 недель, у кроликов, получавших кофеин, гематоэнцефалический барьер оказался значительно прочнее, чем у их собратьев, употреблявших обычную воду, сообщил Гейгер. Гистологическое исследование мозга кроликов показало повышение активности астроцитов – клеток микроглии мозга, а также снижение проницаемости ГЭБ. Новые данные могу помочь в борьбе с болезнью Альцгеймера, при которой происходит повышение уровня холестерина в крови пациентов и, как следствие разрушение ГЭБ, полагают ученые.

Другим средством от болезни Альцгеймера могут стать ионофоры- аналоги 8- гидрокси- хинолина (PBT2), которые действуют на метал-индуцированную агрегацию амилоида. Об этом в июле 2008 года сообщил коллектив Oxidation Biology Laboratory, The Mental Health Research Institute of Victoria.

PBT2 более эффективны, чем Zn/Cu- ионофоры, т.к. легче пронимкают через ГЭБ. Благодаря этому возможно повышение эффективности медикаментозной терапии при болезни Альцгеймера.

Сейчас ведется множество исследований с целью повысить проницаемость ГЭБ для различных лекарств.

Модель для сборки

ГЭБ с одной стороны ограничивает возможности доставки в мозг лекарственных средств, с другой-он защищает мозг от воздействия повреждающих факторов. ГЭБ необходимо изучать. Можно ли создать искусственную модель ГЭБ? Оказалось, да.
В 2006 году ученые из Department of Chemical and Biological Engineering, University of Wisconsin-Madison под руководством Eric V. Shusta продемонстрировали способность нервных стволовых клеток эмбрионального мозга крыс стимулировать приобретение клетками кровеносных сосудов свойств гематоэнцефалического барьера.
В работе использовались стволовые клетки мозга, выращиваемые в виде нейросфер. Такие клетки синтезируют факторы, воздействие которых на эндотелиальные клетки, выстилающие внутреннюю поверхность сосудов мозга, заставляет их формировать плотный барьер, не пропускающий малые молекулы, обычно свободно проникающие через сосудистую стенку.
Авторы отмечают, что формирование такого зачаточного гематоэнцефалического барьера происходит даже при полном отсутствии астроцитов – клеток, обеспечивающих поддержание структуры и функционирования структур мозга, в том числе гематоэнцефалического барьера, но появляющихся в больших количествах только после рождения.
Тот факт, что развивающиеся клетки мозга стимулируют превращение эндотелиальных клеток в клетки гематоэнцефалического барьера, не только проливает свет на механизмы, обеспечивающие безопасность мозга. Авторы планируют создать аналогичную модель гематоэнцефалического барьера с использованием человеческих эндотелиальных и нервных стволовых клеток. Если их попытки увенчаются успехом, то в распоряжении исследователей-фармакологов в скором будущем появится функционирующая модель человеческого гематоэнцефалического барьера, помогающая в преодолении препятствий, стоящих на пути нейробиологов, врачей и разработчиков лекарственных средств, пытающихся найти способы доставки в мозг тех или иных препаратов.

В заключение

В заключение хотелось бы сказать, что гематоэнцефалический барьер- удивительная структура, которая защищает наш мозг. Сейчас ведется множество исследований ГЭБ, в основном их ведут фармакологические компании и эти исследования имеют своей целью определение проницаемости ГЭБ для различных веществ, в основном кандидатов на роль лекарств от тех или иных заболеваний. Но этого недостаточно. С проницаемостью ГЭБ связано страшное возраст-ассоциированное заболевание- болезнь Альцгеймера. С проницаемостью ГЭБ связано старение мозга. Старение ГЭБ ведет за собой старение других структур мозга, а метаболические изменения в стареющем мозге ведут за собой изменения функционирования ГЭБ.
Можно выделить несколько задач для исследователей:
1) Определение проницаемости ГЭБ для различных веществ и анализ накопленных экспериментальных данных  -необходимо для создания новых лекарств.

2) Исследование возрастных изменений ГЭБ.

3) Изучение возможностей регуляции функционирования ГЭБ.

4) Изучение роли изменений ГЭБ в возникновении нейродегенеративных заболеваний

Сейчас необходимы исследования этих вопросов, потому что болезнь Альцгеймера "молодеет". Может быть, научившись правильно регулировать функциональное состояние ГЭБ, научившись укреплять его, научившись понимать глубинные метаболические процессы в мозге ученые наконец-то найдут средства от возраст-ассоциированных заболеваний мозга и
старения...

18 октября 2008 года

Комментарии

Оставить комментарий

Поделиться с друзьями

Share on Twitter